Mark scheme - Purity and Separating Mixtures (F)

Question		Answer/Indicative content	Marks	Guidance
1		B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
		Total	1	
2		B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
		Total	1	
3		D	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	
		Total	1	
4		C	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	Examiner's Comments D was the most common incorrect response.
		Total	1	
5		B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	Examiner's Comments Many candidates added the relative masses of one of each atom and answered A.
		Total	1	
6	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{1 2 0}$ (tonnes) award $\mathbf{3}$ marks M_{r} of $\mathrm{NH}_{3}=17$ AND M_{r} of $\mathrm{NH}_{4} \mathrm{NO}_{3}=80 \mathrm{~V}$ Mass of ammonium nitrate $=\frac{80}{17} \times 25.5 / 1.5$ $x 80 \checkmark$ $=120$ (tonnes) \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW ECF from incorrect RMMs
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 10(g) award 2 marks $\begin{aligned} & \text { Actual mass }=\frac{80 \times 12.5}{100} \checkmark \\ & =10(\mathrm{~g}) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW \% yield $=(\mathrm{am} \div \mathrm{pm}) \times 100$ OR $80=(\mathrm{am} \div 12.5) \times 100$ for 1 mark if no other mark awarded
		Total	5	
7	i	Condenser \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

			Level 2 (3-4 marks) Correctly names the acid and the base used in the neutralisation reaction. OR Method can be followed to make a salt sample. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Method includes adding acid to base. OR Correctly names either the acid or the base used in the neutralisation reaction. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		- base used is potassium hydroxide / potassium oxide / potassium carbonate - pH paper / pH probe is used to show solution made is neutral AO3.3 Analyse of information and ideas to develop experimental procedures - pH probe will not contaminate the solution - evaporate some of the water to form crystals - leave the crystals to dry / dry crystals in an oven
			Total	6	
10	a	i	A AND D $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$	
		ii	Any two from: Conducts electricity in molten state \checkmark Does not conduct electricity in solid state \checkmark High melting point \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 3.2 \mathrm{~b}) \end{gathered}$	ALLOW dissolve in water
	b	i	Add water (and stir) \checkmark Filtration \checkmark B collects on filter paper \checkmark	3 (AO3.3a 1.2 3.3a)	
		II	Distillation OR evaporation OR heating \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1.2 \\ \text { 3.3a) } \end{gathered}$	ALLOW boiling

			Removes water OR dries C OR removes some water and leave to crystalise \checkmark		
			Total	8	
11	a		Low density and idea that aircraft is lightweight / isn't too heavy to fly / less weight to carry / AW \checkmark High strength and idea that aircraft is less likely to be damaged \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 3.2 \mathrm{~b}) \end{gathered}$	DO NOT ALLOW light / lighter for low density but ALLOW so aircraft is light or lighter Answers must give property and explanation for marks BUT ALLOW 1 mark for low density and high strength / strongest if no or only one explanation given Examiner's Comments Many candidates discussed the properties without applying them to the specific use of making an aircraft.
	b	i	$($ Percentage of lithium $=)(2 \div 10) \times 100=$ 20(\%) \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$	Examiner's Comments Many calculated the percentage correctly. Incorrect responses included 25\%, 2\% and 80\%.
		ii	Idea that alloy B is only 2.2% lithium / Idea that alloy B is 2.2% lithium but the diagram has 20% lithium / Idea that the \% of lithium in the alloy is much smaller than in the diagram / there should be 100 aluminium atoms (and 2 lithium atoms) \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 3.2 \mathrm{a}) \end{gathered}$	ALLOW ECF from incorrect percentage in (c)(i) ALLOW should be more Al atoms / 17.8\% too large IGNORE references to the relative sizes of the atoms Examiner's Comments Higher ability candidates compared their answer to the amount quoted in the table. Many discussed the relative sizes of the atoms, the small numbers in the diagram, the structure or properties of an alloy or omitted the question.
			Total	4	
12	a	i	Red and Yellow \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$	BOTH needed for the mark Examiner's Comments Identifying red or yellow rather than both was common, some candidates responded 1849, the date of the paint using all pure dyes.

					laboratory was incorrect but struggled to explain why. A significant number thought the chromatogram matched the paint from 1849.
			Total	7	
13		i	$900\left({ }^{\circ} \mathrm{C}\right) \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 3.3 \mathrm{a}) \end{gathered}$	Examiner's Comments A small but significant number of candidates gave $500^{\circ} \mathrm{C}$
		ii	(compound X) consists of one type of particle/one compound/element/substance	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	ALLOW no other substance mixed with it Examiner's Comments The most common incorrect response was the compound containing just one element.
		iii	A pure substance melts at a specific temperature / the line is horizontal / has a single melting temperature \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW A mixture melts over a range of temperatures / the line would not be horizontal IGNORE boiling point Examiner's Comments Many candidates either did not use the graph to inform their answer or described areas of positive gradient. High melting point was the most common incorrect response, others included: one line and time for melting,
			Total	3	
14	a		Use a magnet \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW dissolve sulfur in solvent/xylene and filter ALLOW sieve Examiner's Comments Candidates found this very difficult with filtration and crystallisation being the most common incorrect responses.
	b			$\begin{gathered} 3 \\ (\mathrm{AO} 1.2) \end{gathered}$	

